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Abstract 
The development of local regularization methods 

stemmed from the theoretical justification of a 

generalization by P. K. Lamm in 1995 of the practical 

method due to J. V. Beck for solving the discretized 

inverse heat conduction problem. Since then the 

convergence theory associated with a priori parameter 

selection has evolved to include finitely smoothing linear 

Volterra problems, nonlinear Hammerstein and 

autoconvolution problems, as well as linear non-Volterra 

integral equations such as those arising in image 

processing. 

 

In recent years, we advanced the development of this 

theory through the construction of an a posteriori 

parameter selection principle for local regularization 

which is theoretically justified and suitable for  data as 

well as for data smoothed in some way.  We will present 

these results, give rates of convergence under suitable 

source conditions, and illustrate effectiveness of the 

principle with some numerical examples. 
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